????JFIF??x?x????'403WebShell
403Webshell
Server IP : 79.136.114.73  /  Your IP : 13.59.50.189
Web Server : Apache/2.4.7 (Ubuntu) PHP/5.5.9-1ubuntu4.29 OpenSSL/1.0.1f
System : Linux b8009 3.13.0-170-generic #220-Ubuntu SMP Thu May 9 12:40:49 UTC 2019 x86_64
User : www-data ( 33)
PHP Version : 5.5.9-1ubuntu4.29
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /var/www/appsrv.astacus.se/energicontrol/PolynomialRegression/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /var/www/appsrv.astacus.se/energicontrol/PolynomialRegression/PolynomialRegression.php
<?php
/*=========================================================================*/
/* Name: PolynomialRegression.php                                          */
/* Uses: Calculates and returns coefficients for polynomial regression.    */
/* Date: 06/01/2009                                                        */
/* Author: Andrew Que (http://www.DrQue.net/)                              */
/* Revisions:                                                              */
/*  0.8 - 06/01/2009- QUE - Creation.                                      */
/*  0.9 - 06/14/2012- QUE -                                                */
/*   + Bug fix: removed notice causes by uninitialized variable.           */
/*   + Converted naming convention.                                        */
/*   + Fix spelling errors (or the ones I found).                          */
/*   + Changed to row-echelon method for solving matrix which is much      */
/*     faster than the determinant method.                                 */
/*  0.91 - 05/17/2013- QUE -                                               */
/*   = Changed name to Polynonial regression as this is more fitting to    */
/*     to the function.                                                    */
/*  0.92 - 12/28/2013- QUE -                                               */
/*   + Added forced offset.                                                */
/*  1.00 - 12/29/2013 - QUE -                                              */
/*   + Forced offset changed to allow any term to be forced.               */
/*    Unit complete.  Correlation coefficient (r-squared) has been         */
/*    implemented externally in the demos.                                 */
/*  1.1 - 2015/05/05 - QUE -                                               */
/*   + 'interpolate' is now static as it does not need an instance to      */
/*     operate.  Useful if coefficients have been calculated elsewhere.    */
/*   - Deprecated 'setDegree' function.  This is the wrong terminology for */
/*     what the function does.  It actually sets the number of             */
/*     coefficients for the polynomial.  The degree of the polynomial is   */
/*     the number of coefficients less one.  Made the identical function   */
/*     'setNumberOfCoefficient' to replace it.                             */
/*   + Added getter functions for anything that has a set function.        */
/*  1.2 - 2015/02/09 - QUE -                                               */
/*   + Support for weighting.                                              */
/*   + Slight improvement in data accumulation.                            */
/*  1.2.1 - 2015/02/17 - QUE -                                             */
/*   + Bug fix to LinearWeighting class.                                   */
/*                                                                         */
/* This project is maintained at:                                          */
/*    http://PolynomialRegression.drque.net/                               */
/*                                                                         */
/* ----------------------------------------------------------------------- */
/*                                                                         */
/* Polynomial regression class.                                            */
/* Copyright (C) 2009, 2012-2015 Andrew Que                                */
/*                                                                         */
/* This program is free software: you can redistribute it and/or modify    */
/* it under the terms of the GNU General Public License as published by    */
/* the Free Software Foundation, either version 3 of the License, or       */
/* (at your option) any later version.                                     */
/*                                                                         */
/* This program is distributed in the hope that it will be useful,         */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of          */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the           */
/* GNU General Public License for more details.                            */
/*                                                                         */
/* You should have received a copy of the GNU General Public License       */
/* along with this program.  If not, see <http://www.gnu.org/licenses/>.   */
/*                                                                         */
/* ----------------------------------------------------------------------- */
/*                                                                         */
/*                      (C) Copyright 2009, 2012-2015                      */
/*                               Andrew Que                                */
/*=========================================================================*/
/**
 * Polynomial regression.
 *
 * <p>
 * Used for calculating polynomial regression coefficients.  Useful for
 * linear and non-linear regression, and polynomial curve fitting.
 *
 * @package PolynomialRegression
 * @author Andrew Que ({@link http://www.DrQue.net/})
 * @link http://PolynomialRegression.drque.net/ Project home page.
 * @copyright Copyright (c) 2009, 2012-2015, Andrew Que
 * @license http://opensource.org/licenses/gpl-license.php GNU Public License
 * @version 1.2.1
 */

/**
 * Interface for weighting the regression.  Implementations of this interface can be used to
 * apply a custom weighting value that emphasizes some values more than others.
 *
 * Note: BC math in the weighting interface is optional as long as the number are not expected
 * to become too small or large.
 *
 * @since Version 1.2.1
 */
interface WeightingInterface
{
  /**
   * Return the weighting term for the given index.
   * Note that the index begins with 1, and counts up for each data point added.  Thus when
   * data is weighted, the order it is entered is important.
   *
   * @param int $index Current index for which to return weighting term.
   */
  public function getWeight( $index );
}

/**
 * Used for calculating polynomial regression coefficients and interpolation using
 * those coefficients.  Useful for linear and non-linear regression, and polynomial
 * curve fitting.
 *
 * Note: Requires BC math to be compiled into PHP.  Higher-degree polynomials end up
 * with very large/small numbers, requiring an arbitrary precision arithmetic.  Make sure
 * to set "bcscale" as coefficients will likely have decimal values.
 *
 * Quick example of using this unit to calculate linear regression (1st degree polynomial):
 *
 * <pre>
 * $regression = new PolynomialRegression( 2 );
 * // ...
 * $regression->addData( $x, $y );
 * // ...
 * $coefficients = $regression->getCoefficients();
 * // ...
 * $y = $regression->interpolate( $coefficients, $x );
 * </pre>
 *
 */
class PolynomialRegression
{
  /** @internal Array of running sum of x^n. */
  private $xPowers;

  /** @internal Array of running sum of x*y powers. */
  private $xyPowers;

  /** @internal Number of coefficients. */
  private $numberOfCoefficient;

  /** @internal Array of forcing terms. */
  private $forcedValue;

  /** @internal The index of the current element.  Basiclly a count of data added. */
  private $index = 0;

  /** @internal The weighting interface.  NULL is unused. */
  private $weightingInterface = NULL;

  /**
   * Constructor
   *
   * Create new class.
   * @param $numberOfCoefficient Number of coefficients in polynomial (degree
   *   of polynomial + 1).
   */
  public function __construct( $numberOfCoefficient = 3 )
  {
    $this->numberOfCoefficient = $numberOfCoefficient;
    $this->reset();

  } // __construct

  /**
   * Reset data.
   *
   * Clear all internal data and prepare for new calculation.
   * Must be called *after* setNumberOfCoefficient if number of coefficients has
   * changed.
   */
  public function reset()
  {
    $this->forcedValue = array();
    $this->xPowers = array();
    $this->xyPowers = array();
    $this->index = 0;
    $this->weightingInterface = NULL;

    $squares = ( $this->numberOfCoefficient - 1 ) * 2;

    // Initialize power arrays.
    for ( $index = 0; $index <= $squares; ++$index )
    {
      $this->xPowers[ $index ] = 0;
      $this->xyPowers[ $index ] = 0;
    }

  } // reset

  /**
   * Set degree (Deprecated).
   *
   * This is the maximum number of coefficients the polynomial function that
   * will be calculate.  Note that the request for coefficients can be lower
   * then this value.  If number is higher, data must be reset and
   * added again.
   * @param int $numberOfCoefficient Number of coefficients.
   * @deprecated Deprecated in version 1.1 because the name doesn't reflect what
   *   the function actually does.  Use 'setNumberOfCoefficient' instead--operations
   *   are identical.
   */
  public function setDegree( $numberOfCoefficient )
  {
    $this->numberOfCoefficient = $numberOfCoefficient;

  } // setDegree

  /**
   * Set the number of coefficients to calculate.
   *
   * This is the maximum number of coefficients the polynomial function that
   * will be calculate.  Note that the request for coefficients can be lower
   * then this value.  If number is higher, data must be reset and
   * added again.
   * @param int $numberOfCoefficient Number of coefficients.
   * @since Version 1.1
   */
  public function setNumberOfCoefficient( $numberOfCoefficient )
  {
    $this->numberOfCoefficient = $numberOfCoefficient;

  } // setNumberOfCoefficient

  /**
   * Get the number of coefficients to calculate.
   *
   * Returns the number of coefficients calculated.
   * @return int Number of coefficients.
   * @since Version 1.1
   */
  public function getNumberOfCoefficient( $numberOfCoefficient )
  {
    return $this->numberOfCoefficient;

  } // getnumberOfCoefficient

  /**
   * Set a forced coefficient.
   *
   * Force a coefficient to be assumed a specific value for the calculation.
   * Most often used to force an offset of zero, but can be used to set any
   * known coefficient for a set of data.
   * @param int $coefficient Which coefficient to force.
   * @param float $value Value to force this coefficient.
   * @since Version 1.0
   */
  public function setForcedCoefficient( $coefficient, $value )
  {
    $this->forcedValue[ $coefficient ] = $value;

  } // setForcedCoefficient

  /**
   * Get a forced coefficient.
   *
   * Get a previously set forced coefficient.
   * @param int $coefficient Which coefficient.
   * @return float Value of this force this coefficient.  Null if the
   *   coefficient isn't being forced.
   * @since Version 1.1
   */
  public function getForcedCoefficient( $coefficient, $value )
  {
    $result = null;
    if ( isset( $this->forcedValue[ $coefficient ] ) )
      $result = $this->forcedValue[ $coefficient ];

    return $result;

  } // getForcedCoefficient

  /**
   * Set a weighting interface.
   *
   * The regression can be weighted on a per-index basis using a weighting
   * interface.  An instance of this interface can be set here.
   * @param WeightingInterface $weightingInterface Instance of weighting system
   *   to be used.
   * @since Version 1.2
   */
  public function setWeighting( WeightingInterface $weightingInterface )
  {
    $this->weightingInterface = $weightingInterface;
  }

  /**
   * Get the weighting interface.
   *
   * Return the current weighting interface being used.  Returns NULL if no
   * interface is used.
   * @param WeightingInterface $weightingInterface Instance of weighting system
   *   to be used.
   * @since Version 1.2
   */
  public function getWeighting()
  {
    return $this->weightingInterface;
  }

  /**
   * Add data.
   *
   * Add a data point to calculation.
   * @param float $x Some real value.
   * @param float $y Some real value corresponding to $x.
   */
  public function addData( $x, $y )
  {
    $squares = ( $this->numberOfCoefficient - 1 ) * 2;

    // Get weighting term for this index.
    $this->index += 1;
    $weight = NULL;
    if ( NULL !== $this->weightingInterface )
      $weight = $this->weightingInterface->getWeight( $this->index );

    // Remove the effect of the forced coefficient from this value.
    foreach ( $this->forcedValue as $coefficient => $value )
    {
      $sub = bcpow( $x, $coefficient );
      $sub = bcmul( $sub, $value );
      $y = bcsub( $y, $sub );
    }

    // Accumulation of $x raised to the power of the loop iteration.
    // $xSum = pow( $x, $index ) starting with pow( $x, 0 ) which is 1.
    $xSum = 1;

    // Accumulate new data to power sums.
    for ( $index = 0; $index <= $squares; ++$index )
    {
      $accumulator = $xSum;

      // Add weighting term (if applicable).
      if ( NULL !== $weight )
        $accumulator = bcmul( $accumulator, $weight );

      $this->xPowers[ $index ] =
        bcadd( $this->xPowers[ $index ], $accumulator );

      $this->xyPowers[ $index ] =
        bcadd( $this->xyPowers[ $index ], bcmul( $y, $accumulator ) );

      $xSum = bcmul( $xSum, $x );
    }

  } // addData

  /**
   * Get coefficients.
   *
   * Calculate and return coefficients based on current data.
   * @param int $numberOfCoefficient Integer value of the degree polynomial desired.  Default
   *    is -1 which is the max number of coefficients set by class.
   * @return array Array of coefficients (as BC strings).
   */
  public function getCoefficients( $numberOfCoefficient = -1 )
  {
    // If no number of coefficients specified, use standard.
    if ( $numberOfCoefficient == -1 )
      $numberOfCoefficient = $this->numberOfCoefficient;

    // Build a matrix.
    // The matrix is made up of the sum of powers.  So if the number represents the power,
    // the matrix will look like this for a 4th degree polynomial:
    //     [ 0 1 2 3 4 ]
    //     [ 1 2 3 4 5 ]
    //     [ 2 3 4 5 6 ]
    //     [ 3 4 5 6 7 ]
    //     [ 4 5 6 7 8 ]
    //
    $matrix = array();
    for ( $row = 0; $row < $numberOfCoefficient; ++$row )
    {
      $matrix[ $row ] = array();
      for ( $column = 0; $column < $numberOfCoefficient; ++$column )
        $matrix[ $row ][ $column ] =
          $this->xPowers[ $row + $column ];
    }

    // Create augmented matrix by adding X*Y powers.
    for ( $row = 0; $row < $numberOfCoefficient; ++$row )
      $matrix[ $row ][ $numberOfCoefficient ] = $this->xyPowers[ $row ];

    // Add in the forced coefficients.  This is done by nulling the row and column
    // for each forced coefficient.  For example, a 3th degree polynomial
    // matrix with have the 2nd coefficient set to F:
    //       [ a b c d w ]      [ a 0 c d w ]
    //       [ b c d e x ]  ->  [ 0 1 0 0 F ]
    //       [ c d e f y ]      [ c 0 e f y ]
    //       [ d e f g z ]      [ d 0 f g z ]
    foreach ( $this->forcedValue as $coefficient => $value )
    {
      for ( $index = 0; $index < $numberOfCoefficient; ++$index )
      {
        $matrix[ $index ][ $coefficient ] = "0";
        $matrix[ $coefficient ][ $index ] = "0";
      }

      $matrix[ $coefficient ][ $coefficient ] = "1";
      $matrix[ $coefficient ][ $numberOfCoefficient ] = $value;
    }

    // Determine number of rows in matrix.
    $rows = count( $matrix );

    // Initialize done.
    $isDone = array();
    for ( $column = 0; $column < $rows; ++$column )
      $isDone[ $column ] = false;

    // This loop will result in an upper-triangle matrix with the
    // diagonals all 1--the first part of row-reduction--using 2
    // elementary row operations: multiplying a row by a scalar, and
    // subtracting a row by a multiple of an other row.
    // NOTE: This loop can be done out-of-order.  That is, the first
    // row may not begin with the first term.  Order is tracked in the
    // "order" array.
    $order = array();
    for ( $column = 0; $column < $rows; ++$column )
    {
      // Find a row to work with.
      // A row that has a term in this column, and has not yet been
      // reduced.
      $activeRow = 0;
      while ( ( ( 0 == $matrix[ $activeRow ][ $column ] )
             || ( $isDone[ $activeRow ] ) )
           && ( $activeRow < $rows ) )
      {
        ++$activeRow;
      }

      // Do we have a term in this row?
      if ( $activeRow < $rows )
      {
        // Remember the order.
        $order[ $column ] = $activeRow;

        // Normalize row--results in the first term being 1.
        $firstTerm = $matrix[ $activeRow ][ $column ];
        for ( $subColumn = $column; $subColumn <= $rows; ++$subColumn )
          $matrix[ $activeRow ][ $subColumn ] =
            bcdiv( $matrix[ $activeRow ][ $subColumn ], $firstTerm );

        // This row is finished.
        $isDone[ $activeRow ] = true;

        // Subtract the active row from all rows that are not finished.
        for ( $row = 0; $row < $rows; ++$row )
          if ( ( ! $isDone[ $row ] )
            && ( 0 != $matrix[ $row ][ $column ] ) )
          {
             // Get first term in row.
             $firstTerm = $matrix[ $row ][ $column ];
             for ( $subColumn = $column; $subColumn <= $rows; ++$subColumn )
             {
               $accumulator = bcmul( $firstTerm, $matrix[ $activeRow ][ $subColumn ] );
               $matrix[ $row ][ $subColumn ] =
                 bcsub( $matrix[ $row ][ $subColumn ], $accumulator );
             }
          }
      }
    }

    // Reset done.
    for ( $row = 0; $row < $rows; ++$row )
     $isDone[ $row ] = false;

    $coefficients = array();

    // Back-substitution.
    // This will solve the matrix completely, resulting in the identity
    // matrix in the x-locations, and the coefficients in the last column.
    //   | 1  0  0 ... 0  c0 |
    //   | 0  1  0 ... 0  c1 |
    //   | .  .  .     .   . |
    //   | .  .  .     .   . |
    //   | 0  0  0 ... 1  cn |
    for ( $column = ( $rows - 1 ); $column >= 0; --$column )
    {
      // The active row is based on order.
      $activeRow = $order[ $column ];

      // The active row is now finished.
      $isDone[ $activeRow ] = true;

      // For all rows not finished...
      for ( $row = 0; $row < $rows; ++$row )
        if ( ! $isDone[ $row ] )
        {
          $firstTerm = $matrix[ $row ][ $column ];

          // Back substitution.
          for ( $subColumn = $column; $subColumn <= $rows; ++$subColumn )
          {
            $accumulator =
              bcmul( $firstTerm, $matrix[ $activeRow ][ $subColumn ] );
            $matrix[ $row ][ $subColumn ] =
              bcsub( $matrix[ $row ][ $subColumn ], $accumulator );
          }
        }

      // Save this coefficient for the return.
      $coefficients[ $column ] = $matrix[ $activeRow ][ $rows ];
    }

    // Coefficients are stored backward, so sort them.
    ksort( $coefficients );

    // Return the coefficients.
    return $coefficients;

  } // getCoefficients

  /**
   * Interpolate
   *
   * Return y point for given x and coefficient set.  Function is static as it
   * does not require any instance data to operate.
   * @param array $coefficients Coefficients as calculated by 'getCoefficients'.
   * @param float $x X-coordinate from which to calculate Y.
   * @return float Y-coordinate (as floating-point).
   */
  static public function interpolate( $coefficients, $x )
  {
    $numberOfCoefficient = count( $coefficients );

    $y = 0;
    for ( $coefficentIndex = 0; $coefficentIndex < $numberOfCoefficient; ++$coefficentIndex )
    {
      // y += coefficients[ coefficentIndex ] * x^coefficentIndex
      $y =
        bcadd
        (
          $y,
          bcmul
          (
            $coefficients[ $coefficentIndex ],
            bcpow( $x, $coefficentIndex )
          )
        );
    }

    return floatval( $y );

  } // interpolate

} // Class

// "Science is like an inoculation against charlatans who would have you believe
// whatever it is they tell you." -- Neil deGrasse Tyson

?>

Youez - 2016 - github.com/yon3zu
LinuXploit