????JFIF??x?x????'
Server IP : 79.136.114.73 / Your IP : 3.147.77.120 Web Server : Apache/2.4.7 (Ubuntu) PHP/5.5.9-1ubuntu4.29 OpenSSL/1.0.1f System : Linux b8009 3.13.0-170-generic #220-Ubuntu SMP Thu May 9 12:40:49 UTC 2019 x86_64 User : www-data ( 33) PHP Version : 5.5.9-1ubuntu4.29 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority, MySQL : ON | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : ON | Pkexec : ON Directory : /proc/self/root/home/b8009/Python-3.6.3/Modules/_decimal/libmpdec/literature/ |
Upload File : |
(* Copyright (c) 2011 Stefan Krah. All rights reserved. *) The Six Step Transform: ======================= In libmpdec, the six-step transform is the Matrix Fourier Transform (See matrix-transform.txt) in disguise. It is called six-step transform after a variant that appears in [1]. The algorithm requires that the input array can be viewed as an R*C matrix. Algorithm six-step (forward transform): --------------------------------------- 1a) Transpose the matrix. 1b) Apply a length R FNT to each row. 1c) Transpose the matrix. 2) Multiply each matrix element (addressed by j*C+m) by r**(j*m). 3) Apply a length C FNT to each row. 4) Transpose the matrix. Note that steps 1a) - 1c) are exactly equivalent to step 1) of the Matrix Fourier Transform. For large R, it is faster to transpose twice and do a transform on the rows than to perform a column transpose directly. Algorithm six-step (inverse transform): --------------------------------------- 0) View the matrix as a C*R matrix. 1) Transpose the matrix, producing an R*C matrix. 2) Apply a length C FNT to each row. 3) Multiply each matrix element (addressed by i*C+n) by r**(i*n). 4a) Transpose the matrix. 4b) Apply a length R FNT to each row. 4c) Transpose the matrix. Again, steps 4a) - 4c) are equivalent to step 4) of the Matrix Fourier Transform. -- [1] David H. Bailey: FFTs in External or Hierarchical Memory http://crd.lbl.gov/~dhbailey/dhbpapers/